[image: image1.png]O NANTAGE FX

Vantage FX SmartTrader Tools

Excel RTD

21.
About the Excel RTD app

32
Displaying real-time data in Excel

32.1
Running the RTD app

32.1.1
Symbols menu in the RTD app

32.2
Excel formula

42.3
Property names

42.3.1
Account data properties

42.3.2
Price and symbol data properties

52.3.3
Ticket data properties

52.3.4
Other properties

62.4
Symbol names and standardisation

62.5
Volumes

73.
Sending trading commands from Excel

73.1
Reading data in VBA code

73.1.1
Checking if a reader is successfully connected

73.1.2
Data consistency across multiple reads

83.2
Sending trading commands from Excel

93.2.1
Differences between trading platforms

93.2.2
Commands and parameters

93.2.2.1
TEST command

93.2.2.2
BUY and SELL commands

103.2.2.3
BUYLIMIT, SELLLIMIT, BUYSTOP, and SELLSTOP commands

103.2.2.4
CLOSE command

103.2.2.5
PARTIALCLOSE command

113.2.2.6
REVERSE command

113.2.2.7
CLOSESYMBOL command

113.2.2.8
CLOSEALL command

113.2.3
Standard error messages

123.3
Asynchronous commands

1.
About the Excel RTD app
The Excel RTD app lets you do two things:

· Put real-time data into Excel using only Excel’s RTD() function. No macros; no programming; no XLL add-ins

· Send simple trading commands from VBA code in Excel

You can run multiple copies of the Excel RTD app for different accounts, and then combine the data for those accounts in a single spreadsheet.

The app is supplied with an example spreadsheet which lets you enter up to 5 account numbers, and then automatically displays a dashboard of equity and balance etc; symbol prices; and a consolidated list of open positions.
2
Displaying real-time data in Excel

2.1
Running the RTD app

In order to put real-time data into Excel you need to run the RTD app. The Excel formulas listed below will give blank values if the app is not running.

2.1.1
Symbols menu in the RTD app

For all platforms except tradable (which always reports all available symbols):

You can control which symbol prices are supplied to Excel using the Symbols menu in the RTD app. We recommend that you only configure the app to use the symbols which you actually need.

(In other words: a property name such as bidGBPUSD will be blank if GBPUSD is available on your trading platform but you have not included it in app’s list in its Symbols menu.)

2.2
Excel formula

Once the RTD app is running, you can use the following formula in Excel to insert a real-time feed of account, ticket, or price data. You simply need to fill in the account number, and the “property” which you want to display:

=RTD(“Vantage FXLabs.ExcelRTD”, , “account number”, “property”)

For example, if your account number is 156734 and you want to display the account’s balance, or the bid price of GBPUSD:

=RTD(“Vantage FXLabs.ExcelRTD”, , “156734”, “balance”)

=RTD(“Vantage FXLabs.ExcelRTD”, , “156734”, “bidGBPUSD”)

2.3
Property names

The RTD app supplies data about the account (e.g. equity and balance), symbol prices, and “tickets”. The list of tickets includes both open positions and pending orders.

2.3.1
Account data properties
	Property
	Meaning

	currency
	The deposit currency of the account

	balance
	Account balance

	equity
	Account equity

	pl
	Floating profit/loss

	usedmargin
	Margin in use

	freemargin
	Free margin

	tickets
	Number of “tickets”: open positions and pending orders

2.3.2
Price and symbol data properties
The app supplies the current ask and bid prices for all symbols configured in the app. For example, if the symbol name you are interested in is EURUSD, then the property name for its ask price is askEURUSD. For example:

=RTD(“Vantage FXLabs.ExcelRTD”, , “156734”, “askEURUSD”)

	Property
	Meaning

	bidSymbol
	Bid price of symbol

	askSymbol
	Ask price of symbol

The app also provides a count and a list of all configured symbols. For example, the following formulas return the number of available symbols and the name of the 5th symbol on the list (which can be in any order):

=RTD(“Vantage FXLabs.ExcelRTD”, , “156734”, “symbols”)

=RTD(“Vantage FXLabs.ExcelRTD”, , “156734”, “s5”)

	Property
	Meaning

	symbols
	Number of symbols

	sN
	Name of the nth symbol, e.g. EURUSD. The N value is an index between 1 and the total number of symbols

2.3.3
Ticket data properties
The app supplies the following information about each “ticket”, i.e. each open position and pending order. The N value in each property name is an index between 1 and the total number of tickets (reported by the tickets property).
For example, you can get the symbol name and net profit of the 2nd ticket (if there is one) using the following formulas:

=RTD(“Vantage FXLabs.ExcelRTD”, , “156734”, “t2s”)

=RTD(“Vantage FXLabs.ExcelRTD”, , “156734”, “t2npl”)

	Property
	Meaning

	tNt
	Ticket number, i.e. the ID of the open position or pending order

	tNa
	Action: BUY, SELL, BUYLIMIT, SELLLIMIT, BUYSTOP, SELLSTOP

	tNs
	Symbol name

	tNv
	Volume

	tNnpl
	Net profit (gross profit + commission + swap). Not applicable on pending orders, and reported as zero.

	tNpl
	Gross profit. Not applicable on pending orders, and reported as zero.

	tNswap
	Swap. Not applicable on pending orders, and reported as zero.

	tNcomm
	Commission. Not applicable on pending orders, and reported as zero.

	tNsl
	Stop-loss price

	tNtp
	Take-profit price

	tNop
	Open/entry price

	tNcp
	Current price of symbol

	tNcm
	Order comment

	tNmg
	Order magic number (MetaTrader 4 only)

	tNot
	Open time (as number of seconds since 1/1/1970)

2.3.4
Other properties

	Property
	Meaning

	LastUpdateTime
	Time of the last update from the RTD app. Will report 1/1/2000 if the RTD app is not running for the account.

2.4
Symbol names and standardisation

By default the RTD app uses standardised symbol names. These may be different to the symbol names which your broker uses in your trading platform. For example, your broker’s symbol names may have a suffix such as cx or mn, e.g. EURUSDcx or EURUSDmn.

By default, all forex symbols are converted to the form AAABBB. For example, a name such as EURUSDnm or EUR/USD will be converted by default to EURUSD. You can turn off this standardisation by un-ticking the option “Use standardised symbol names” in the app.
This setting is intended for spreadsheets where you are collecting data from multiple accounts on different brokers/platforms (by running multiple copies of the RTD app), and the brokers/platforms use different symbol names.
For example, you might have something like the following spreadsheet where there are account numbers in columns B onwards, and symbol names in rows 2 onwards. You can then have a formula which uses the symbol names in column A without having to adjust for one account using EUR/USD and the other using EURUSDfx etc.

	
	A
	B
	C

	1
	Symbol/Account
	12376522
	265823654

	2
	EURUSD
	[see below]
	

	3
	GBPUSD
	
	

In cell B2: =RTD(“Vantage FXLabs.ExcelRTD”, , B$1, CONCATENATE(“bid”, $A2))

You could then fill the formula from cell B2 into B3, C2 etc and the cell references would automatically adjust.

(The CONCATENATE function in Excel simply joins two pieces of together. In the above example it is joining the text “bid” with the symbol name in column A, to produce the property name bidEURUSD or bidGBPUSD.)

2.5
Volumes

The RTD app reports the volumes on tickets as the nominal volume, not as a lot size. For example, a size of 0.20 lots will be reported as a volume of 20000.

(Unless you are using something like an MT4 mini account with a lot size of 10K instead of 100K, in which case 0.20 lots would be 2000 instead of 20000.)
3.
Sending trading commands from Excel

The RTD app can also be used to send simple trading commands from VBA code in Excel. You can also programmatically read the same data which is available via the RTD function.
The following features can in fact be used from any programming language which supports COM, not just from VBA in Excel.

3.1
Reading data in VBA code

You can read data programmatically using the Vantage FXLabs.ExcelReader object. For example:

Set reader = CreateObject("Vantage FXLabs.ExcelReader")

reader.Connect ("156734")

MsgBox reader.Read("balance")

In other words: you create an instance of the Vantage FXLabs.ExcelReader object; you use the Connect() function to link it to a specific account number; and then you can use the Read() function to get data about the account.

The property names for the Read() function are the same as the property names for use with Excel’s RTD function.

3.1.1
Checking if a reader is successfully connected

You can successfully create the ExcelReader object and call the Connect() function even if no RTD app is currently running for that account.

In order to check whether data is actually available you can use Read() to make sure that properties such as balance are not blank, or you can read the LastUpdateTime property and check that the time is later than 1/1/2000.

3.1.2
Data consistency across multiple reads

If you are querying multiple pieces of data, particularly multiple pieces of ticket data, then you need to be careful about updates and data consistency. For example, consider the following code which loops through the ticket list:
For i = 1 To reader.Read("tickets")

 strSymbol = reader.Read("t" & i & "s")

 vVolume = reader.Read("t" & i & "v")

Next

It is possible for the following to happen:

· At outset there are 2 open tickets

· Between the two uses of Read(), i.e. between the execution of lines 2 and 3, one of the tickets is closed.

· Therefore, what used to be ticket 2 becomes ticket 1.

· As a result, at the end of the first loop, strSymbol will hold the symbol of the ticket which is now closed, and vVolume will hold the volume of the ticket which is still open.

To ensure consistency while reading multiple pieces of data, use Reader.ReaderLock(). This will suspend any changes to the data until you then use Reader.ReaderUnlock(). For example:

Reader.ReaderLock()

For i = 1 To reader.Read("tickets")

 strSymbol = reader.Read("t" & i & "s")

 vVolume = reader.Read("t" & i & "v")

Next

Reader.ReaderUnlock()

Don’t forget to call ReadUnlock() after using ReaderLock()…

3.2
Sending trading commands from Excel

As a security measure, commands are turned off by default. You must turn on the “Accept commands” setting in the RTD app in order to send commands successfully. If this option is turned off then all commands will return “ERR:Commands not allowed”.
You can send simple commands from Excel using the Vantage FXLabs.ExcelCommand object. For example:

Set cmd = CreateObject("Vantage FXLabs.ExcelCommand")

strResult = cmd.SendCommand("156734", "BUY", "s=EURUSD|v=10000", 5)

The SendCommand() function has four parameters:
· The account number (e.g. 156734)
· The command, e.g. BUY
· Parameters for the command, e.g. symbol and volume to buy
· The number of seconds to wait for a response

SendCommand() is synchronous. It returns either when the RTD app completes the command, or when the timeout period expires. (Timeout does not mean that the request such as a market order has been withdrawn/cancelled. It only means that the broker/platform has not responded within the acceptable time.)
The return value from SendCommand() is a string, beginning either with ERR: to indicate that an error occurred, or with OKAY:. The only exception to this is the TEST command, which returns the text HELLO.

3.2.1
Differences between trading platforms

There are some minor differences in the trading features which are currently supported on different platforms:

· “Magic numbers” are only valid for MT4 and MT5, and these parameters will be ignored on other platforms.

· Order comments are only available on some platforms.

· Stop-losses and take-profits are not currently supported on tradable

3.2.2
Commands and parameters
The parameters for a command are sent as a pipe-delimited string, consisting of a number of settings in the format name=value. The parameters can be listed in any order, and some parameters are optional.
cmd.SendCommand("156734", "BUY", "s=EURUSD|v=10000", 5)

Trading volumes are always specified as cash amounts, not as lot sizes. The format of symbol names depends on whether the “Use standardised symbol names” option is turned on in the RTD app.
3.2.2.1
TEST command

Simply returns the text HELLO if successful.

3.2.2.2
BUY and SELL commands

Submits buy or sell market orders. If successful, it returns the ID of the new ticket in the form OKAY:ticket-number

	Parameter
	Optional?
	Meaning

	S
	Compulsory
	Symbol name for the buy order

	V
	Compulsory
	Trading volume

	sl
	Optional
	Stop-loss price for the new position

	tp
	Optional
	Take-profit price for the new position

	comment
	Optional
	Comment for the new position

	magic
	Optional
	Magic number for the new position

3.2.2.3
BUYLIMIT, SELLLIMIT, BUYSTOP, and SELLSTOP commands

Submits a new pending order. If successful, it returns the ID of the new ticket in the form OKAY:ticket-number

	Parameter
	Optional?
	Meaning

	S
	Compulsory
	Symbol name for the buy order

	V
	Compulsory
	Trading volume

	price
	Compulsory
	Entry price for the pending stop/limit order

	sl
	Optional
	Stop-loss price for the new position

	tp
	Optional
	Take-profit price for the new position

	comment
	Optional
	Comment for the new position

	magic
	Optional
	Magic number for the new position

3.2.2.4
CLOSE command

Closes an open position or deletes a pending order. Returns OKAY:okay if successful.

	Parameter
	Optional?
	Meaning

	t
	Compulsory
	ID of the position to be closed, or the pending order to be deleted.

3.2.2.5
PARTIALCLOSE command

Does a partial-close of an open position. Returns OKAY:okay if successful. Volumes larger than the position size are simply treated as a full close (not as a close plus a reverse for the remaining amount). Cannot be used on pending orders.
	Parameter
	Optional?
	Meaning

	t
	Compulsory
	ID of the position to be partially closed.

	v
	Compulsory
	Volume to be closed, e.g. 20000

3.2.2.6
REVERSE command

Reverses an open position, e.g. closing an open sell and replacing it with a buy. Returns OKAY:okay if successful.

	Parameter
	Optional?
	Meaning

	t
	Compulsory
	ID of the position to be reversed

	v
	Optional
	Volume for the new reversed position. If omitted, the volume of the existing position is used (i.e. symmetrical reverse)

	sl
	Optional
	Stop-loss price for the new position

	tp
	Optional
	Take-profit price for the new position

	comment
	Optional
	Comment for the new position

	magic
	Optional
	Magic number for the new position

3.2.2.7
CLOSESYMBOL command

Closes all open positions and pending orders for a specific symbol. Returns OKAY:okay if successful.

	Parameter
	Optional?
	Meaning

	s
	Compulsory
	Symbol name to close

3.2.2.8
CLOSEALL command

Closes all open positions and pending orders for all symbols. Returns OKAY:okay if successful. Please note that closing everything can require a substantial timeout.

	Parameter
	Optional?
	Meaning

	(none)

3.2.3
Standard error messages

	Property
	Meaning

	ERR:Need account
	Account value for SendCommand() is blank

	ERR:Need command
	Command value for SendCommand() is blank

	ERR:No listening app
	Cannot find an running instance of the RTD app for the specified account

	ERR:No response within timeout
	No response from the broker/platform within the specified number of seconds

	ERR:Commands not allowed
	The “Allow commands” option is not turned on in the RTD app

	ERR:Unrecognised command
	The command value for SendCommand() is not understood by the RTD app

	ERR:Missing parameters
	The command was missing one or more compulsory parameters

3.3
Asynchronous commands
It is also possible to send commands asynchronously rather than blocking execution of the VBA code until the command completes or times out. This works as follows:

· You use SendCommandAsync() instead of SendCommand().

· You periodically check the result of the asynchronous action using CheckAsyncResult().

· When finished (or when you have decided to give up) you free up the command memory using FreeAsyncCommand()

For example:

Set cmd = CreateObject("Vantage FXLabs.ExcelCommand")

lCommandId = cmd.SendCommandAsync("10915", "BUY", "s=EURUSD|v=10000", 60)

strResult = ""

While strResult = ""

 strResult = cmd.CheckAsyncResult(lCommandId)

 If strResult = "" Then MsgBox "Still waiting..."

Wend

cmd.FreeAsyncCommand (lCommandId)

SendCommandAsync uses the same four parameters as SendCommand(), but returns a “command ID” for subsequent use with CheckAsyncResult() and FreeAsyncCommand(), instead of returning the command result. Please note that SendCommandAsync() still has a timeout value.

You must eventually call FreeAsyncCommand() after SendCommandAsync(), or else your code will leak memory, albeit in small amounts.

CheckAsyncResult() either returns a blank string if the command is still executing and has not reached its specified timeout or, if complete, it returns the same string response as SendCommand().

2

